Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 3
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 4
Schritt 4.1
Vereinfache den Zähler.
Schritt 4.1.1
Potenziere mit .
Schritt 4.1.2
Multipliziere .
Schritt 4.1.2.1
Mutltipliziere mit .
Schritt 4.1.2.2
Mutltipliziere mit .
Schritt 4.1.3
Subtrahiere von .
Schritt 4.1.4
Schreibe als um.
Schritt 4.1.5
Schreibe als um.
Schritt 4.1.6
Schreibe als um.
Schritt 4.1.7
Schreibe als um.
Schritt 4.1.7.1
Faktorisiere aus heraus.
Schritt 4.1.7.2
Schreibe als um.
Schritt 4.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 4.1.9
Bringe auf die linke Seite von .
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Vereinfache .
Schritt 5
Schritt 5.1
Vereinfache den Zähler.
Schritt 5.1.1
Potenziere mit .
Schritt 5.1.2
Multipliziere .
Schritt 5.1.2.1
Mutltipliziere mit .
Schritt 5.1.2.2
Mutltipliziere mit .
Schritt 5.1.3
Subtrahiere von .
Schritt 5.1.4
Schreibe als um.
Schritt 5.1.5
Schreibe als um.
Schritt 5.1.6
Schreibe als um.
Schritt 5.1.7
Schreibe als um.
Schritt 5.1.7.1
Faktorisiere aus heraus.
Schritt 5.1.7.2
Schreibe als um.
Schritt 5.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 5.1.9
Bringe auf die linke Seite von .
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Vereinfache .
Schritt 5.4
Ändere das zu .
Schritt 6
Schritt 6.1
Vereinfache den Zähler.
Schritt 6.1.1
Potenziere mit .
Schritt 6.1.2
Multipliziere .
Schritt 6.1.2.1
Mutltipliziere mit .
Schritt 6.1.2.2
Mutltipliziere mit .
Schritt 6.1.3
Subtrahiere von .
Schritt 6.1.4
Schreibe als um.
Schritt 6.1.5
Schreibe als um.
Schritt 6.1.6
Schreibe als um.
Schritt 6.1.7
Schreibe als um.
Schritt 6.1.7.1
Faktorisiere aus heraus.
Schritt 6.1.7.2
Schreibe als um.
Schritt 6.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 6.1.9
Bringe auf die linke Seite von .
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Vereinfache .
Schritt 6.4
Ändere das zu .
Schritt 7
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 8
Die Definitionsmenge ist die Menge aller gültigen -Werte.
Schritt 9